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Abstract 
We have developed a new expansion’ we call the 
“chirplet transform”. It has been successfully applied to 
a wide variety of signal processing applications including 
radar[l] and image processing. 

There has been a recent debate as to the relative 
merits of an affine-in-time (wavelet) transform and the 
classical Short Time Fourier Transform (STFT), for the 
analysis of non-stationary phenomena. Chirplet filters 
embody both the wavelet and STFT as special cases by 
decoupling the filter bandwidths and center frequencies. 

Chirplets, by their embodiment of affine geometry 
in the TF plane, may also include shears in time and 
frequency (chirps), and even time-bandwidth product 
variation (noise bursts) if desired. The most gen- 
eral chirplets may be derived from one or more basic 
(“mother”) chirplets by the transformations of perspec- 
tive geometry in the Time-Frequency (TF) plane. 

1 INTRODUCTION 
The well-known wavelet transform was originally de- 
rived through one dimensional affine transformations in 
the physical (eg. time) domain. Our proposed chirplet 
bases, however, were first derived through affine trans- 
forms in the T F  plane, and later through the application 
of projective geometry to  the T F  plane. One way to  visu- 
alize this process is to imagine that you have some basic 
(“mother”) chirplet. You compute its Time-Frequency 
distribution (eg. Wigner distribution, spectrogram, or 
the like). You then photograph the display of this distri- 
bution a t  any oblique angle. For each photograph of the 
distribution, you hypothetically derive an inverse of that 
TF distribution to arrive at a new time-domain func- 
tion. In its most general form, the family of chirplets is 
defined by the eight parameters of twice-applied perspec- 
t i ve  geometry.  An alternative visualization is to imagine 
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grabbing the four corners of the mother chirplet’s T F  
distribution and moving them wherever you like. Now 
the family of chirplets are the functions which have these 
new T F  distributions. 

Of course, computation of the full eight parameter 
chirplets themselves is not trivial, and a transform de- 
rived as an array with eight incices is horrendous both 
to compute and to store digitally, with any reasonable 
grid density. Nevertheless, this new mode of thought 
gives us another perspective (no pun intended) on T F  
theory by providing a unified framework in which to 
view most other T F  methods which are embodied as 
lower dimensional manifolds in the new “chirplet” space. 
For example, both the wavelet transform, and the Short 
Time Fourier Transform (STFT) are planar chirplet 
slices. Many adaptive methods may be expressed as two- 
dimensional chirplet manifolds. Baraniuk e t .  al. [2][3] 
provide an excellent treatment of a number of adaptive 
T F  methods. 

2 SPECIAL CASES 
We have identified various special cases of the chirplet, 
along with their number of free parameters, and success- 
ful practical applications. The cases are arranged in a 
hierarchical order; each one is a special case of all of the 
ones above it. 

Co-linear; approximate with 8 parameters; one 
(T,F) coordinate pair for each corner of the “con- 
trol box”; (Bi-linear interpolation may be used if a 
rough approximation is sufficient.) Used for mod- 
eling processes such as guitar strings which have a 
broad (noiselike) spectrum when initially plucked, 
but become more tonelike as the process evolves. 

Perspective; 7 parameters; We have extended our 
idea to higher dimensions for image processing 
applications[4]. Consider an oblique image of a 
tiled wall. In the picture, the “periodic” pattern 
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gets smaller and smaller toward the end of the pic- 
ture where the tiles were further from the camera. 
Decomposing onto a basis of “plane chirps” per- 
forms better than 2-D Fourier decomposition (plane 
waves) because plane chirps may vary in density 
(spatial variation in spatial frequency) to match ar- 
bitrary perspective. 

0 Affine: 6 parameters, of the form y = Ax+ b where 
A E %2x2 and b E sR2; Successfully applied to ma- 
rine radar. May generate noiselike bursts, for mod- 
eling Doppler returns from sea clutter, or other non- 
rigid bodies. 

0 Symplectic (constant time-bandwidth product: 
det(A1 = 1); 5 parameters; Tone-like bases model 
rigid bodies moving at constant speeds. Pure chirp 
bases model Doppler from rigid bodies undergoing 
acceleration. Successfully used for automobile traf- 
fic radar, as well as marine radar targets. 

T and F Shear Invariant; 4 parameters. Mother 
chirplets for which no distinction between shear-in- 
time and shear-in-frequency need be made. Exam- 
ples include the chirped Gabor bases, if we consider 
magnitude TF distributions only. Successfully ap- 
plied to radar. 

3 TF-AFFINE CHIRPLETS 
Here we will only examine the TF-affine chirplet. 

Using the six 2-D affine transformations in the T F  
plane leads to a transform which is stored in an array 
having six indices.2 (Recall that the wavelet bases have 
only two parameters, dilation and translation, since their 
affinity is only in the physical domain.) 

This basis consists of all the members of a particular 
time domain signal, which are affine transformations of 
each other when viewed in TF space. The T F  distribu- 
tions of these bases could all be thought of as being from 
the mother chirplet’s T F  distribution, viewed obliquely 
through a telescope (rectangles become parallelograms). 
In other words, no perspective is involved in the TF- 
affine transformations. 

Philosophically there are two ways to think of the 
chirplet: 

1. Using the “piece-of-a-chirp” framework. This phi- 
losophy is exemplified in Figure 1 

2. Thinking in terms of affine transformations in T F  
space, which consist of dilations and “chirpings” (in 
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Figure 1: Relationship between wave, wavelet, chirp and 
“chirplet”, in terms of time series and magnitude Time- 
Frequency (TF) distributions. We have extended the one 
dimensional affinity of the wavelet to two dimensions, 
by adding up-down translation and shear in T F  space. 
These extra affine transformations are achieved by mul- 
tiplication, in the time domain, of the wavelet by a chirp, 
which performs a shear and a translation along the F’re- 
quency  axis. This simplified Gabor chirplet, with only 
4 parameters, assumes we are looking at magnitude-only 
T F  distributions. 

2The large number of degrees of freedom was dealt with either 
by examining lower dimension manifolds, or by using an adaptive 
algorithm[5]. 
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both time and frequency). We note that transla- 
tions (modulations and delays) are just special cases 
of “chirpings” (in time and frequency), where the 
chirp rate is zero. This second philosophy is illus- 
trated in Figure 2. 

4 THE PROLET CHIRPLET 
We illustrate our T F  affine concept by a simple exam- 
ple, using a function which “attempts to be” rectangular 
in T F  space, the Discrete Prolate Spheroidal Sequence 
(DPSS). These functions are of special interest in the 
signal processing community (for a full description, the 
reader is referred to Landau, Pollack, Slepian[6] [7]) and 
are commonly referred to as prolates or Slepians3. When 
we apply our TF affine transformations to the prolate, 
we obtain a specific class of chirplets which we refer to 
as prolate chirplets ‘. 

We define six operators which act on a mother 
chirplet, g ( t ) ,  to produce the other members of the fam- 
ily. The symbols depict the change in shape within the 
T F  plane, where the arrows indicate the sign conven- 
tion chosen, and do not necessarily indicate the actual 
direction of operation for all the members of the family. 

H ( t o ) g ( t )  = g(t  - t o )  is a translation in time, 
by t o .  A shift right in T F  space is the same as 
a shift right in time. An interesting, although 
very inefficient alternative means of performing this 
translation is by a Fourier transformation, followed 
by (de)modulation, followed by an inverse Fourier 
transformation. This seemingly obscure conceptu- 
alization helps in making the mental jump to the 
shear-in-time operation. 

m ( f o ) g ( t )  = g ( t ) e j z r f o  is a translation in fre- 
quency (modulation). 

m ( a ) g ( t )  = h ( t / a )  is a dilation in time, by scale 
factor a,  with a new function h which has time band- 
width product also increased by a. (Mathematical 
description depends on 9.) 

m ( a ) g ( t )  = h(at) is a dilation in frequency, by 
scale factor a, with increase in time bandwidth 
product. (Again, mathematical description depends 
on s.1 

We have applied the TF-affine operators to a number of dif- 
ferent signals. Here the Slepian is chosen simply because it is the 
most illustrative of the concept, not necessarily because it gives 
the best performance. 

We have also successfully implemented a new variant of Thom- 
son’s method of spectral estimation using a family of these prolate 
chirplets as multiple data windows. 
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Figure 2: Actual spectrograms of a particular mother 
chirplet, after being acted on by each of the TF-affine 
transformations. Here we have used a family of Dis- 
crete Prolate Spheroidal Sequences (DPSS), and arrived 
at our 6 parameter prolate chirplet family. (Note that 
the time bandwidth product is free to vary; although 
it has a lower bound. We may also fix the time band- 
width product, leaving 5 independent parameters, and 
simplifying the mathematical description.) 
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5 .  

6. 

II] + ( tb , te)g( t )  = F-’C(-ta,-te)Tg(t), where 3 
designates the Fourier operator, and 
C(zt,, ze)g(+) = e z p ( j 2 7 r ( y z  + v z ) g ( z )  is 
the “chirping” operation, which may be defined in 
terms of beginning and ending time (or frequency). 
The chirping operator is simply an extension of 
(de)modulation to two time or frequency variables, 
rather than just one. Thus a shear in time is simply 
a chirping in the frequency domain. 

a(fb, fe)g( t )  = C( fb , f e )g ( t )  is a flhear in fie- 
quency which is just an extension of modulation 
to both a beginning frequency and an ending fre- 
quency, rather than just a center frequency as in the 
usual definition of modulation. 

The effect of each of these six operators is illustrated 
as a TF density plot in Figure 2. Actual spectrograms 
were computed using Thomson’s method of spectral es- 
timation, but any TF method gives roughly the same 
overall shape, with a similar 2-D affine characteristic. 

Note also that if we simply stretch out one of the 
chirplets in time, we also compact it in frequency. In 
some applications, it may not be necessary to inde- 
pendently dilate in time and frequency, so that that 
operators 3 and 4 may be combined into one opera- 

tor as follows: H ( a ) g ( t )  = g( t /a ) ,  giving a 5 pa- 
rameter space, where the mathematical description of 
all the members of the chirplet family is of the same 
form. This symplectic case corresponds to the constant 
time-bandwidth product previously mentioned] where 
the term “chirplet” is perhaps most appropriate (ie. pure 
chirps). 

Many chirplet families fall into this category. One of 
the notable exceptions, however, is a family of DPSS 
which may collectivly act to define a mother chirplet 
with possibly increased time-bandwidth product. 

5 “WARBLETS” 
Tests on actual radar data, pertaining to ocean surveil- 
lance, show that the radar return from small ice frag- 
ments rises and falls in frequency. (From a surfer’s 
perspective ocean waves rise and fall periodically, so it 
stands to reason that the Doppler tone (velocity) one 
gets from a floating object also rises and falls periodi- 
cally in pitch.) 

In order to match this physical phenomenon we se- 
lected a particular “mother chirplet”, to which we ap- 
plied the first three of the our TF-affine operators, along 
with the constant time-bandwidth product constraint. 
Since this particular choice of chirplet has a profound 

significance, we have given it a special name, the “war- 
blet” . Warblets are chirplets where the mother chirplet 
is a single tone FM signal (like the sound produced by 
either a police siren or the bird known as a warbler), as 

A particular manifold in warblet space, the 
modulation-index versus modulation-frequency plane, 
has been found to be very useful in analyzing actual 
marine radar data, making use of the nearly cyclo- 
stationary T F  pattern of Doppler returns from floating 
objects being influenced by ocean waves. 

. 8sin P i / , t + g  given by: II, = ( j m  ’ ) + J n n f c t  

6 CONCLUSION 
We have created a new paradigm in TF analysis which 
allows for a general framework in which to discuss and 
compare various methods. Although the chirplet trans- 
form is seldom actually used in its entire form, it lends 
itself to various subspaces, which have proven themselves 
in a number of practical applications. Furthermore, we 
have laid the foundation for further development of this 
general theory. 
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